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Abstract. We introduce Clifford geometric algebras of multivectors which exhibit a bilinear form
which is not necessarily symmetric. Looking at a subset of bi-vectaféi{?", B), we prove that

these elements provide a representation of the Hecke alggbia+ 1, ¢) if the bilinear formB

is chosen appropriately. This shows thatiuantization can be generated by Clifford multivector
objects which usually describe composite entities. This contrasts current approaches which give
deformed versions of Clifford algebras by deforming the one-vector variables. Our example shows
that it is not evident, from a mathematical point of view, thadeformation is in any sense more
elementary than the undeformed structure.

1. Introduction

Recent developments in theoretical physics employ the so-aatledcommutative geometry

[1] or in a more special casgdeformed geometfp—4]. The underlying structure is either
C*-theory, which also incorporates topological and convergence aspects, or Hopf algebras,
which model the algebraic aspects of a theory [5, 6]. It is convenient to speakyshmetry

since the spaces on whighsymmetry acts tend to bd@aided It is thus convenient to study
braided monoidal categories, see, for example, [2, 7, 8]. The mainideaisto introduce a braided
tensor product algebra structure

(@®b)(c®d)=aV(b®c)d (@D)]
whereW is a braiding. If¥ is trivial or minus the flip operato¥ (¢ ® b) = —b ® a, one deals
with the ordinary tensor product (bosons) dZagraded version of it (fermions). A general
braiding thus leads to general or braid statistics. The central relations obeyed by braid groups
are the Artin braid relations [9]

Litisal; = tivaliliv1

tity = tit; i — k| > 2. (2)
The first is actually equivalent to the so-called quantum Yang—Baxter equation, which is a
special case of the Yang—Baxter equation [10] (in standard notation)

Ri2(u) Ri3(u + v) Ro3(v) = Ra3(v) Riz(u + v) R12(v) 3)

with the spectral parameters sette= u + v = u.
There has been great progress in the theory of (quantum) statistical mechanics, which
originated in the development of the inverse scattering method [11] and the star triangle
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relation [12], both methods having their roots in braided symmetries, see, for example, [13].
There are now many models which are solvable by these methods: the Ising [1¥} state

Potts models [15, 16] and the Vertex [17] and IRF models [18] are prominent examples. A
further example might be given by the (fractional) quantum Hall effect [19]. Furthermore, the
unexpected connection between link invariants and type Il subfactors of von Neumann algebras
unveiled by Jones has pushed low-dimensional topology far ahead, see [20, 21]. There is even
a connection of the Jones polynomial to quantum field theory [22].

A further branch of applications arises from the common belief¢ghsgmmetry is more
general than the usual bosonic or fermionic symmetries and is thus more fundamental, see,
for example, [2, 23, 24]. The natural thing to do is therefore to proyidieformed versions
of physical relevant groups, for example the Poigagnoup [25]. There is a strong belief that
the fundamental constahtis involved in this construction and that spacetime should behave
as if it were g-symmetric’ at small scales.

The above-mentioned situations, whersymmetry leads to explicit results, share the
feature of being effective or composite models. There is no rengdéncehatg-symmetry
has to be used in fundamental interactions. Moreover, it might be expected;tufarmed
Poincag group has an underlying structure which generates this symmetry.

From a mathematical viewpoint, there is no harnyideforming all structures which
can be so changed. However, a physical application requires an interpretation which seems
currently not to be obvious, but relies on rather abstract developments such as quantum planes
andg-deformed or non-commutative geometry.

We are thus in a perplexing situation, because in gegedaformation can be applied to
nearly every mathematical structure which is currently used in physics. However, we do not
know in which cases this might be reasonable. To be able to answer this question, itis a valuable
advantage to embed the mathematical structure which lays at the hgadeédrmation, the
Hecke algebra, into a larger framework. From this outstanding point of view it might be
possible to decide i§-symmetry has to be applied to, for example, gravitation or not.

A very interesting approach tp-symmetry using spinors, and thereby also with the help
of Clifford algebras, can be found in [7]. This approach, however, tgkegnmetry as an
elementary property. In the same spirit, the Clifford algebra of a Hecke braid was constructed
in [26].

We will provide a theorem which shows that Hecke algebra representations can be obtained
within certain Clifford algebras, being faithful in low dimensions. These representations are
generated by bi-vector elements and thus by objects which are composed. Furthermore, since
the interpretation of Clifford algebraic expressions is well known, we come to the conclusion
thatg-symmetry is tightly interwoven witckompositestructures, as was suggested already in
[27]. This relation is seen from the fact thatsymmetry is obtained in this approach as a
multivector symmetry. It is this relation that makes us so suspiciousgefleformation of
spacetime as long as one does not haneéczoscopic descriptioof these entities. Hopefully
our approach will open the possibility of clarifying this situation.

2. Clifford geometric algebra of multivectors

There are many possibilities of introducing Clifford algebras, each of them emphasizing a
different point of view. In our case, itis of utmostimportance to have the Clifford algebra built
over a graded linear space. This grading is obtained from the space underlying a Grassmann
algebra. The Clifford algebra is then related to the endomorphism algebra of this Grassmann
algebra. This construction, the Chevalley deformation [28], was originally invented to be able
to treat Clifford algebras over fields ohar = 2, see the appendix of [29] by Lounesto and



Hecke algebra representations 1921

[36]. However, we use this construction in an entirely different context. With the help of the

construction of Riesz [29], one is able to reconstruct the multivector structure and thereby a

correspondence between the linear spaces underlying the Clifford algebra and the Grassmann

algebrainuse. Thisreconstruction depends on an automorphisich is arbitrary, see [30].

In fact this is just the reversed direction of our construction given below following Chevalley.
Let T (V) be the tensor algebra built over tRelinear spacé/. The fieldK will be either

R or C. With V° ~ K we have

TWV)=K®eVeVexVe---. (4)

The tensor algebra is associative and unital.T[f¥) one has bilateral or two-sided ideals,
which can be used to construct new algebras by factorization. As an example, we define the
Grassmann algebra in this way.

Definition 1. The Grassmann algebraA (V) is the factor algebra of the tensor algebra wrt
the bilateral ideal

Ioo=]y=a®@x@x®ba,beT(V),x V)
AW =2a @y =22 —Kevevive:.. )

The canonical projectiorr : T(V) — A (V) maps the tensor produ@ onto the exterior or
wedge product denoted by

One may note that the factorization preserves the grading naturally inherited by the tensor
algebra, since the idedl, is homogeneous. Defining the homogeneous part® @f)
and A(V) by T*(V) = V®---® V and /\"(V) = V A--- AV, k-factors, we obtain
T (T5(V)) = N(V).
Proceeding to Clifford algebras requires a further structure, the quadratic form.
Definition 2. The mapQ : V — K, satisfying& € K, x, y € V)

(i) O(ax) = a®Q(x) (6a)
(ii) B,(x,y) = 3(Q(x +y) — Q(x) — O(»)) (6b)

whereB, (x, y) is a symmetric bilinear form, is called a quadratic form.
It is tempting to introduce an idea¢,
Iee={yly=a®@x®x—-00))®b,a,beT(V),x €V} (1)

to obtain the Clifford algebra by a factorization procedure. However, since we are interested
in arbitrary bilinear forms underlying a Clifford algebra, we will take another approach, which
is much more reasonable for such a structure. Furthermore, the Clifford alipds@othave
an intrinsic multivector structure, but@ly Z, graded, since the ide&}, is inhomogeneous.

Let V* be the space of linear forms dh i.e. V* ~ lin[ V, K]. Elementsw € V* act on
elementst € V, but there isno naturalidentification betweetv and V*. However, we can
find a set ofr; which spang/ and dual elements; acting on thex; in acanonicalway

o (x;) = 8. (8)

This allows the introductionofamap: V — V*, x* = w;, which may be called the Euclidean
dual isomorphism [31]. The two spac@s®, V) connected by this duality constitute a pairing
(-] :V*x V> K. V*isisomorphic toV in finite dimensions, so it is natural to build a
Grassmann algebra (V*) over it. This is the algebra of Grassmann multiforms.

It is therefore natural to extend the pairing of the grade-one space and its dual to the
whole algebrag\ (V) and /\(V*), as can be seen by its frequent occurrence in the literature
[30, 32—36] and others. This can be seen in the following.



1922 B Fauser

Definition 3. Letz,n € A(V*), w € V*, u,v € A(V) andx € V, then we can define a
canonical action ofA\ (V*) on /A (V) requiring

() o(x) = {(w | x) (9a)
(i) o Av)=wl) Av+u A o) (9b)
(iif) (T Am@) =t(m@) (9)
whereii is the main involutiorV = —V extended to\ (V).

In definition 3 we have in fact given an isomorphism between the Grassmann algebra of
multiforms A (V*) and the dual Grassmann algebyg(V)]*. This can be made much clearer
by writing

yax =wy(x) = (wy | x) = B(y, x) (10)

where we have used the canonical identificatiorVoaAnd V* via the pairing. One should
be very careful in the distinction of\ (V*) and [\ (V)]*, since they are isomorphic but not
equivalent. Furthermore, we emphasize that in writthgwe make explicit use of apecial
dual isomorphism encoded in the contraction

VeV
Y= yi=w,y. (12)
Since there is no natural, that is mathematically motivated or even better functorial, relation

betweenV andV*, we are called to seek f@hysically motivated reasoris select a pairing.
This freedom will enable us in section 3 to give a proof of our main theorem.

Theorem 4. Let (V, Q) be a pair of aK-linear spaceV and a quadratic fornQ as defined
in definition 2. There exists an injectign called a Clifford map fronV into the associative
unital algebraCe(V, Q), which satisfies

VaVx = Q). (12)

Definition 5. The (smallest) algebr&?(V, Q) generated byl andy,,, {x;} spanV, is called
(the) Clifford algebra ofQ overV.

By polarization of the relation (12) we get the usual commutation relatiansge V,

VaVy T Vy Vs :ZBp(x7y):“ (13)
whereB, (x, y) is the symmetric polar form of) as defined in (6).

Remarks. (i) We could have obtained this result directly by factorization of the tensor algebra
with the ideal (7). (ii) There exist Clifford algebras which are universal, in this case it is
convenient to speak frorthe Clifford algebra over(V, Q). (iii)) If V ~ K" ~ C" or R”,

we denoteCL(V, Q) also byCL(C") ~ Ct, or C¢(R,, ,) where the paip, ¢ enumerate the
number of positive and negative eigenvaluegdof We can also give the dimensianand
signatures = p — g to classify all quadratic forms ovék. In the case of the complex field,
one remains with the dimension as can be seen, for example, from the Weyl unitary trick,
letting x; — ix; which flips the sign. We do not use sesquilinear forms here, which could
nevertheless be included.

We will now use Chevalley deformations to construct the Clifford algebra of multivectors.
The main idea is that one can decompose the Clifford map as

Vi =X atx AL (14)

There is thus a natural action pf on A (V).
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Theorem 6 (Chevalley).Let A(V) be the Grassmann algebra ovéf andy : V
End(/\(V)) be defined as in (14), thenis a Clifford map.

We have shown that? is a subalgebra of the endomorphism algebraov),

cc A\ (15)

Itis possible to interpret L andx A as annihilating and creatiaperators(on the Grassmann
algebra) [37].

With the help of relations (9) we can then lift this Clifford map to multivector actions.
No symmetry requirement has to be made on the contracfidis leads to the following
definition.

Definition 7 (Clifford algebra of multivectors). LetB : VxV +— Kbeanarbitrary bilinear
form. The Clifford algebraC¢(V, B) obtained from lifting the Clifford map

e =x1txA={(x|-)+xA=B(x, ) +xA (16)
to End(/\ (V)) using relations (9) is called Clifford algebra of multivectors.

Note thatB(x, -) = w, is a map fromV — V* andincorporatesa dual isomorphism. It
is clear from the construction tha¥(V, B) has a multivector structure or sayZa-grading
inherited from the Grassmann algebkgV).

B admits a decomposition into symmetric and antisymmetric pawrts G + F. The
symmetric partG = B, corresponds to a quadratic for@ see definition 2.

Theorem 8. The Clifford algebraCt(V, Q) >~ Ce(V, G) is isomorphic as Clifford algebra to
Ct(V, B), if B admits a decompositioB =G+ F,G' =G, FT = —F.

A proof can be found for low dimensions in [35] and in general in [8]. However, this result
is implicitly known to physicists, see [38, 39]. In fact, this is the old Wick rule of quantum field
theory. We will insist on theZ,,-grading and therefore carefully distinguish Clifford algebras
of multivectors with a common quadratic for@ but different contractiong3. Only this
generalization makes it possible to find a Hecke algebra representation in Clifford algebras.

We give some further notation. L¢j;} be a set of elements spannifig>~ (j1, ..., j.)
and{d,} be a set of dual elements. Building the Grassmann algeh(& and /A (V*) and
defining the action of the forms via (9), one obtains the relations

0] Jinji=0=09; A0 (17a)

(ii) i jk + jx0i = Bix + Bri = 2G . (17b)
The spaceVV = V & V* is thus spanned by (note the reversed order of indices fob the
elements)

(e, .. v eomy = {J1s s jus Ons ..., 01). (18)
To have a simple notation, we introduce barred indiced1l, ..., n}

€; = exp41—i (19)
or equivalently

e = j; e; = epp+1—i = 0;. (20)

The contraction oV in C¢(V, B) is then written as
Bl B

aj 29
qu Bxy

[M,]7 [BL]”?
[Blei.e))] = [B;] = [B2 1% [Nyy]? (1)
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where the superscripts indicate the type of base element. Indices of blocks{in in}.
Note that the matriceB!, B> and N are not directly submatrices & because of our barred
index notation. Introducing am x n matrix J = §; ,+1—x we can identify them as

B/? — BlJ BY — B2 B = JNJ. (22)

We could handle thes2dimensional complex case &¥(R%'*', B), but we will restrict
ourselves to the even-dimensional case and loolkCHC?) ~ C ® CL(R%) as a
complexification.

3. Hecke algebra representations over Clifford bi-vector generators

3.1. The definition and main theorem on the algebra morphism

Definition 9. The Hecke algebré/k (n + 1, g) has the following presentation

(i) 2=1-qr +ql Hecke condition (23a)
(i) Lty = ety |l — k| > 2 commutator (23b)
(iii) titiv1l; = fiv1titie Artin braid relation [9] (23c)

with generatordl, b;,i € {1, ..., n}, see [40].

Our goal is to find an algebra homomorphism of thgenerators as bi-vectors in an
appropriate Clifford algebra?(R?", B) or C¢(C?", B). We can formulate our result in the
following.

Theorem 10. A representatiorp of the Hecke algebraddk (n + 1, ¢) of definition 9 can be
found in the Clifford algebra of multivectors¢(K?*, B) of definition 7 with the following
identifications:

0] pt;)) =b; =e; A e =€ Nyl = Ji A0 ief{l, ....,n} (249
(ii) B:=[B;] = [B:,]"” [B’”]{a (24b)
[Buu]”  [Byy]"
where the submatrices & satisfy the conditions
B/ = M,, = 3(M,; — M,,)
JB"J = Ney = 3(Ney — Ny%)
B/*J =[Bj;] = [Ba *(q — Bw)3.a]
JBY =[BZ,] = [~Buy + (L +q)8y5+ q8us1y + u w1l (25)

Proof. We determine the constraints on the bilinear faBrby (23).

(i) We try to identify the bi-vector elements from (24) with Hecke generatorsfrom (23).
Since we insist on the multivector structure inherited from the Grassmann multivectors
underlying the Clifford multivectors, we have to fulfil in any case the condition

ee; =B;;+e; Ne; =0 (BlTlT = 0) (26)
The Hecke relation (28 leads with

bi = ji N0 = jid; — B (27)

1
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to
b7 = (ji A 3)?
= (Ji% — Bij)Ji N0
= ji[Bid — jid?] — Bi7ji A 9;
= B;;Bj; — (B;; — B;;)Ji N 9;
= B;;B;; — (B;; — B;jj)b;
|
=1 —q)bi +q. (28)
We obtain as solutions
B;=1 or —q
B =q or -1 (29)
We will choseB;; = 1, B;; = ¢. The overall minus sign does not matter in our

considerations. Including the nilpotency of the Grassmann soyraedd, we obtained
4n constraints orB.

(i) The commutator relation (28, which is valid for|k —i| > 2, can be calculated along the
same lines as in (28). This results in

bib; — byb; = (BszBiE — Bg;By; — BB + BE;B/”‘):“
+(Byy * Bip) ji N Ok — (Bip + Big) ji A 9
—(Big + Bip)ji A Jik — (Bix + Bri)0; A O

|
2o (30)
From this we obtain
Bix = =By B = —Br; B = =By (31)

if |i —k| > 2. This leads to3(n — 2)/2 constraints orB.
(i) The third relation is somewhat lengthy and yields

bibis1b; — bis1bibi+1 = (1 +q)(Bji+1Bm17 — Biv1i Bip) 1
+((Bisy + Biis) (Bin + Biagy)
—(Bii+1+ Bi+1) (Bg7 + By — @) Jji N 0
+((Bjiz1 t Bizay) (Bissi + Biix1)
—(Biz; * Biiz) (Bisyi + Bijvy) + @) jiv1 A Oiv1
—(1+q)(Bii+1+ Bix1)9; A 0ix1+ (1 +q)(Bizx + Bizgp)Ji A Jin

Lo (32)
This leads to
Bi+ii = —Biis1 Biia = — B Bjiyy=1- By Brg, =9 — B
(33)

which are 4n — 1) further constraints oB. All in all, we have to impose the constraints
given in (26), (29), (31) and (33) on the bilinear form of 4x? arbitrary K-valued
parameters. We obtain
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3n2+131 — 8
No of constraints= nf (34)

and remain with
5n2 — 132+ 8
> .

The explicit form of B can be derived from the constraints to be of the form (25). Since
we remain with superfluous degrees of freedom, which might be set to arbitrary numbers,
we have derived a whole set of Hecke algebra representatiarig h B).

No of degrees of freedos (35)

O

3.2. On the structure of the algebra morphigm

Since we have shown that we can find an image set of generators, we have to ask if they are free.
In other words, we have to show whether or not the representatmimjective or equivalently
has a trivial kernel. The mere calculation of the relations does not show this [41].

3.2.1. Some general aspects of the morphisifthe main argument for a non-trivial kernel
relies on dimensional considerations and belongs to the referee. We can calculate the maximal
possible dimension spanned by the Clifford generatasdd in the following way. We have

dimV = dimVT = n and thus din¥ = dimV @ VT = 2n. The corresponding Clifford
algebra has? dimensions; however, since we are interested only in even-graded elements, we
remain with dimCe(V, B)even= 22"~1 = 4"/2. On the other hand, it is known, for example
[42,43], that the dimension dix (n + 1, ¢) is equivalent t&5,..1, iff ¢ is generic, i.e. not a root

of unity. One knows that this leads to difix (n + 1, g) = dim S,+1 = (n + 1)!. From table 1,

we see that for > 5 the number of linear independent algebra elementdaf: + 1, ¢)
exceeds the number of all independent even-dimensional Clifford elements.

Table 1. Dimensions of Clifford algebras, Hecke algebras and the kernel. For a special setting of
the remaining freedoms more decisive results are given in section 3.2.2.

=

dimCleven=4"/2 dimHx(n+1,g)=n+1)! kerp

1 2 2 0 (trivial)

2 8 6 0 (non-trivial)
3 32 24 ?

4 128 120 ?

5 521 720 #0

It is clear that from the results in table 1 that we have a non-trivial kernel for geqeric
andn > 5.

Proof. Proof of the injectivity forn = 2. From the representation theory of the symmetric
group, it is known [44] that the transposition class-sum uniquely characterizes all irreducible
representations up t€. Furthermore, it was shown that in the Hecke case the corresponding
construction is [45]

1
q2

1 n—1 n—2
Crpi=ntiph bt o Dttt + 5 Y titistisgtival ¥t b byt
i=1 i=1

q
(36)
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This central operator now uniquely describes all irreducible representatidiig(af+ 1, ¢).
Different eigenvalues distinguish orthogonal representations, where multiple roots count the
number of equivalent representations. In our case, we have

1
C3=by+by+ —b1boby (37)
q
where we calculat€’; in the C¢-imagé The eigenvalues are
1 1
[(—qz - 29)*, (2 + —) L(1- q)“} (38)
q
[-3.3,(0"],-1 (39)

in agreement with [45], where the exponent gives the degeneracy. The fundamental
representation is the orthogonal sum of the corresponding eigenspaces and is therefore of
dimension 6= 3! = dim Hk (3, q).

Remark. The elegant methods for studying Hecke algebras used in [45, 46] are not applicable,
since they remain within the Hecke algebra setting and do not show the possible degeneracy
of the image generators.

Remark. We might circumvent the dimensional argument against an injective homomorphism
in the following way. Assume thatwe findamaf$” : Hx(n+1, g) — C¢(K?", B) of higher
degree with®)(1;) = bfz” so that the Hecke relations (23) are satisfieg, 1 was our above
case. If one then seekdinear independent diagonal%lementsb}zr), this required/ to be of
dimension(2n), which leads to a total dimension of'2/2" = 2= for C¢**(V, B) — r

times the even part. Singeis in principle arbitrary, we may construct algebra morphisms
»@) which do not fail to be injective for sufficiently largedue to the dimensional argument
However, this is not a proof that ke = 0. There might be a non-trivial kernel for other
reasons, as can be expected from the discussion in the next subsection.

Remark. If one looks at thebgz” as composed objects, only low-dimensional cases are of
physical interest.

Remark. A genuine account af-symmetry and its relation to classical groups can be found
in [7,45]. From this work, it is clear that not allx (n + 1, ¢) representations can occur if

the invariance under the innbi-vectorproduct is also required. This can also be seen for
symmetric groups [47]. Adirect construction of spinor representations etc within the composite
Clifford algebraic framework has intriguing details and will be given elsewhere, but see also
[48].

3.2.2. Structure theorem fdeerp in the balanced situation. In this section we will consider
the properties of kép). This kernel has an intriguing structure, but we will be able to prove
in relevant cases which structure governs the split into image and kernel.

Lemma 11. The kernel op strongly depends on the values, zero or not, of the chosen bilinear
form B. Since the symmetric part is fixed by (23) up to special coordinate transformations
leaving (23) invariant, the kernel dimension actually depends on the antisymmetric part
of B.
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Proof. Calculate the Clifford product of two generatdys b;:

bibj = B;;B;5 — B;jBij + Byjji N 9j — B jj N0 — Bijji A Jj — Bijdi A9+

j,-/\jj/\ajABi. (40)
Examining the terms with two basis elements, we notice that they possess a pré3faaiitn
or without barred indices. If such a factor is zero, the whole term vanishes. Furthermore, we
cannot generate this Clifford basis monomial by another product df thenerators. [

Obviously this means, that the kernel dimension increases with every vanishing element
in B. Since we had some freedom to choose the antisymmetric p&rtwé can have larger
and smaller kernels.

To reach our final goal, the description of the kerned &r a special choice of parameters,
we have to construct all Clifford basis monomials which can be reached by multiglying
generators. What is needed is an algebraic basis of the Hecke ajgghi@perform the map
o Hg(n+1,qg) — Ct,, on this basis, i.ep : {b;} — {j A 3;}, where capitals denote
index sets. We define some properties of an algebraic basis of the Hecke algebra [46].

Definition 12. A minimal wordg, , is a sequence df; generators with step-wise decreasing
indicesg, s = bib,_1bi—>...b,_;.

A minimal word has lengtly + 1. By examination we see that there &é + n + 2)/2
such words.

Definition 13. A reduced WOrth;, s, 1,.5.....1,.5, 1S @ product of minimal wordg,, ,,, where
s; < t;+1 holds.

Lemma 14. The reduced words build up a basis of the Hecke algéhté: +1, ¢) for generic
q.

Proof. We have built up the sets of minimal wordd}, {1, b1}, ..., {1,b;,b;b;_1, ...,

bjbj_1... bi},..., {1, ..., b,...b1}. Multiplying the terms element-wise and collecting
them in a new set gives a totality ofl - - x n = n! different reduced words, which therefore
spanHk(n + 1, q). |

This basis provides us with the so-called regular representation, which contains all
irreducible representations according to their multiplicity. It is convenient to introduge (
Young diagrams to label these representations and humberings, and hence Young tableaux to
distinguish the different but isomorphic copies of the same type. We wte [. , n,] for a
partition of N = Y n; into s parts (Young diagram). Furthermore, we defind & [1, ..., 1]
r-times and [0] as [4] are defined as no-box, i.e;,P] = [r] and |, 1°] = [r], to simplify
special cases in our formulae. If we write for the multiplicity andy; for the Young diagram,
we obtain the decomposition formula

@by = B Du, V. (41)

Remark. We loosely speak about Young diagrams and Young tableaux instegdfaing
diagrams an@-Young tableaux, since we only need some of their very general properties.
In fact, g-Young diagrams are identical to Young diagrams, fotffoung tableaux should be
handled with care. The-Young operators corresponding to such tableaux show up a quite
different structure, as the box content also becomes a functignsefe [46, 48].

We now apply the map onto this basis to obtain the corresponding Clifford monomials
and obtain as the lack of elements the dimension and structure of the kernel. To be able to do
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this, we specialize the bilinear for® in a suitable manner. From physical applications and
driven by simplicity, we are interested in balanced multivectors only. Furthermore, we will
introduce a new basis respectively a new more suitable bilinear form also denaBed by

Definition 15. A balanced multivector is a multivectdf; 7 where the cardinality of the index
sets off andJ are equal, i.e#I = #J (equal number of andd generators).

It is trivial to see that thé; generators are balanced; however, from (40) we see, that
their products contain non-balanced multivectors. If we now set the doubly barred and doubly
unbarred elements in the bilinear foBnzero, which can be done since they all belong to the
antisymmetric part oB, the product formula (40) goes over into

To simplify the bilinear form further, obtaining a bilinear form which is non-zero in every

block off-diagonal entry, we define

[Bij] := [ ° Bu]

B¢ 0
— )\'2+q —_
— v v
4 y
A +gq A2 +gq
— — v v
A A
A2 +gq A +gq
v — q — v
B" = A A
)»2+q A2+q
v v — q —
A A
A +gq
v v —
L 3 q _
rl Y —V ]
g A =V —v
A
—v g 1 A —v
B! = *
—v —v g 1 A
A
o ) 4 1
L Y _
v#£0#A. (43)

It is no restriction to our question to identify all free parameters as belonging to two species,
since only their vanishing or not vanishing affects the structure of the kernel. In general,
however, different parameter values lead to differentresults. The paramatetsare distinct
due to the fact that might be set to zero, while i is set to zerg is no longer a morphism
from Hx(n + 1, ) into C¢; . We may further notice that the symmetric part of the above
bilinear form after performing the limig = » — 1 andv — 0 becomes one half the Cartan
matrix A, in each blockG*, G?. The doubled symmetric pa@t(q) = 2+ 1/2% (B + BT)
can be defined ag-Cartan matrix of4,,(¢). However, without the antisymmetric part Bf
this will not lead to a ‘quantum’ structure.

We are now prepared to give a structure theorem of kethis special situation.
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Theorem 16 (Balanced morphism).Let p be a Hecke algebra morphism as described in
theorem 10 wrt the bilinear form given in (43). The morphisrmaps all representations
which have L-shaped Young diagrafig — r), 1'], one row one column, bijectively into the
Clifford algebraC¢;, ,. The kerneker p consists of all other representations Bk (n + 1, ¢).

The dimension of the imagengp = p(Hx(n + 1, q)) is #imgp = (2n)!/(n!)? while the
dimension of the kernel #kerp = n! — #imgp. The representation spaces corresponding to
different Young diagrams (including multiplicities) are given by the spaces of multivectors of
different grades (Grassmannians), denotediby.

To prove theorem 16 we need some further results.

Lemma 17. The Clifford reversion, denoted By, maps theg-symmetrizer and;-anti-
symmetrizer of the same symbols onto one another. Thatterchanges rows and columns
in Young diagrams and tableaux.

Proof. Observe that the (anti)symmetrizet(+) of two elements is given as

+b; 1-—b;
Pi+ = —q Pi_ = — (44)
g+1 g+1
We have
Pt = q + bi”
! g+l g+1
_q+(1-q)—b
- q +1
1-—b;
= =P 45
q + 1 1 ( )
andvice versasince™ ™ = Id. This property can be enlarged to so-called Garnir elements [46]

which are needed to construct theanti) symmetrizer and, due to the fact thats an anti-
algebra morphism wrt the Clifford product, to the whole Young operators, which are products
of row symmetrizers and column antisymmetrizers. O

Lemma 18. If and only if a representation with a corresponding Young diagram is mapped
into C¢* , then the tilted representation occurs there also. Tilted means representations for a

n,n?

Young diagram with rows and columns interchanged.

Proof. We can expand the Clifford picture of the corresponding Young operator of the Young
diagram into a Clifford product and sum of Clifford basis monomials. Then the Clifford
reversion yields the tilted Young operator with lemma 17. |

We need some more information on the dimensionality of L-shaped diagrams.

Lemma 19. The dimension of the representation of an L-shaped Young diagram of type
[(d — r), 17 is equal to the binomial coefficierof). The dimension of all such L-shaped
representations, multiplicities included, is

d . d d 2 2d)!
;#[(d—r),1]=2(r) = (46)

r=0

The same conventions {8 and[1°] are assumed as above.
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For a proof we refer to [47,49]. In fact, only the ‘hook-rule’ and multiplicities are
needed.
We can now prove theorem 16.

Proof of Theorem 16.We have seen in (42) that two generators when multiplied yield many
Clifford monomials. We have to distinguish two types of them. The first is that of correlated
indices, hence for example elements of type {ij}

which can easily be generated by multiplying the generators and picking out the highest grade.
These might also be obtained by ‘wedging’ the generators.
The second type of Clifford monomials is built up from elements with two maximal distinct

index setd N J = @, for examplel = {ij}, J = {rs}

€7 = eijrs = ji AJjj A A D (48)
In (42) we found that two generatabg b; produce such terms as

Bi5jj A0 B ji A9 (49)

tj
These terms are non-zero if and onlyAf; and B;; are non-zero. To be able to generate

all possible elements of this second form, we have to requireBfja 0 # B;; Vi, j as

is the case in (43). Furthermore, one has to notice that the maximal cardinalitgrafJ
isn/2,sincel UJ = {1,...,n}andI N J = @. This means that only generators are
needed to produce these elements. All other elements required are mixed forms of these two
types. The length of the reduced words has a range fronw0 and is thus rich enough to

yield every balanced monomial, as can be seen by iteration of the above arguments. This
proves that the image af consists of all balanced Clifford monomialsdi, . In terms of a
formula,

imgp(Hx(n+1,q)) = ®"_4Gi; (50)

wheregG, ; are Grassmannians of balanced multivector spaces.

To complete the proof, we have to give the dimensionalities and identifications with
representations of these spaces. Obvioushy ¢t= #G, , = 1, and the other spaces are built
up as follows £ timesr factors)

Grr=VA-AVAVIA...AVT

#V/\-.-sz(”)

r

#VTA-~-AVT=<n). (51)
r
We obtain the following formula for the dimensions:
. o e\ ()
#imgp = #@"_, G,,,_;(r) = G (52)

To complete the claims of theorem 16, we have to show that the sp@ggsof
balanced multivectors of definite grade provide representations according to the L-shaped
Young diagrams of type(f — r),1"]. From lemma 19 we know that the dimension
formula

#l(n—r), 1] = #G,, (53)
holds for all r, where 0 andn is included by our above definition. It

remains to show that these spaces are invariant under the action of the generators
b;.
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There are three cases. We can define a Lie action df;thenerators on th&,,, spaces
via a commutatoX, € G,,

b; ® X7 = [b;, X,7]. (54)
Since the); are bi-vector elements this action is grade preserving. A little bit surprising is the
fact that we can also find a left (right) representation on the spacesefined ad,7 € G,.,,

b e Y, :=bYss € G,,. (55)
The third possibility is given by the automorphism action. Calculating

2

bil = —E[(l — q) — bz] = —Eb,’~ (56)
q q

we have withZ,; € G,,
b,eZs; .= b,‘Zﬁbi_l. (57)

This map is grade preserving since thegenerators are in the Clifford Lipschitz group, see
[48], even if the reversion does not respect the grades!

Obviously, all types of representations are degenerate with the multiplijty
corresponding to the Young diagrarh. To get the irreducible representations one would
have to pick out a special basis ., which splits the Grassmannians infx(n + 1, q)
irreducible parts according to numberings$n Young tableauX; r

Grr=0mYi =®rYr. (58)
The kernel of the balanced morphissnconsists thus of all irreducible representations with
non-L-shaped Young diagrams and is of dimension #kern! — #imgp. a

Remark. The balanced case is closely related to supersymmetry, as can be seen from
[46], where supersymmetric Schur functions are used to characterize the representations.
Furthermore, it is known that supersymmetric, or better graded, groups gain representations
which are characterized by L-shaped Young diagrams wdtbws andy-columns in the case

of aG(plq) supergroup [50]. See as a reference and for further literature [51].

Remark. From our results, it is clear thatix(3,q9) (n = 2) is the only case
where we have an algebra isomorphism. The next higher dimenBiod, q) (n =

3) has a non-L-shaped Young diagram of type2R It is of dimension two and
multiplicity two, which gives a four-dimensional kernel and a space of 20 dimensions
for the balanced multivectors in the imagé = 3)!/(3)2 = 20, together: 4! =

24 = 20 + 4. The basis sets and dimensions have been checked independently by
computer algebra up to the cagt(5,¢9) (n = 4). There the kernel consists of the
representations [2] and [2 2, 1], which are 50-dimensional including multiplicities, each
being representation five-dimensional with multiplicity fivex® + 5% 5 = 50. That

is again, using(2 x 4)!/(4)2 = 70 one has finally the decomposition 5 120 =
70 + 50.

Remark. Since it was essential that all block-off-diagonal matrix elements of the bilinear
form (43) had to be non-zero, this has an implication on physical systems underlying
such a model. From [52] we know that this situation is obtained for mixed states only,
i.e. states which can be decomposed into convex combinations of pure or vector states.
The g-symmetric case is thus generically connected to non-Fock vacua and may describe
quasi-particles, which would support our point of view tlRasymmetry is a symmetry
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of objects with internal structure or say composites, without addressing this structure
explicitly.

3.2.3. Further observations on related algebraic systen®ince we have proved theorem 10
for the quadratic Hecke condition (28 we have to give some comments on the other choices
of the quadratic or higher relations. One finds in the literature at least the following types of
relations

b?>=(1—q)b; +q 2=(q—qghHy+1 e? = e uiQ =1 (59)
In general, one has a quadratic—or higher orderuseerelation
xf = g(@x; +h(q) (60)

whereg and i are meromorphic functions @f. The question, if there is a transformation
connecting the;’s and in general the;’s, addresses the number of equivalence classes of
quadratic relations. We can reformulate the above equationgdtd = E whereE is a
constant, and we have to classify quadratic forms. This can be doné&Ramed C with the

help of the Brauer group(K) [53, 36]. This group is trivial forC since the complex field is
algebraically closed and isomorphic{tel, +1} as a multiplicative group in the caseRf

~ K*
B(K) = e (61)
However, this classification only takes (@3into account. It is easy to calculate that a
transformation of the type

x; = a(q) +b(q)b (62)

with meromorphici(q), b(g) does not alter (2. However, (23) is in generahot invariant

under such a transformation, which is well known in the literature. In fact, one should restrict
the allowed transformations to those which leave (23) unchanged. However, interesting cases
do not respect the third law in general. As an example, one arrives at the relations of a
Temperley-Lieb algebra [54], where the third relation is given using (g1 +b;)/(g + 1),

T = (2+qg+g~ Y1, compare with (23), as

eiej+1€; — Te = €;+1€;€;+]1 — TE€+] (=0). (63)

Here (= 0) indicates that usually the left- and right-hand sides are each set to zero which

is in fact a new relation. The transformation from the Hecke algebra into the Temperley—
Lieb algebra would be of the above-described invariance set only=f 0, which leads to

q € {0, co}. In our approach, such a relation can easily be obtained simply by another choice

of the bilinear formB or of course by the above transformation. It remains, however, to

find a connection between traces employed in the phenomenological models and states on our
algebra. Such states were introduced in [52] and provide a very rigid struct@rg BnB).

These states are necessary to be able to calculate invariants and physical outcomes and to be
able to show (in)equivalence between different (re)presentations. This intriguing problem will

be addressed elsewhere.

4. Conclusion

As our main tool we have used Clifford geometric algebras of multivectors, which provide a
generalization of ordinary Clifford algebras of quadratic spaces to such a p&ir 83.(The
bilinear form does not have any symmetry in general and is thus not bijectively connected to a
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guadratic form. Every bilinear forrB with the same symmetric paft gives rise to the same
Clifford algebra. Taking the fulB into account allows one to endow the Clifford algebra with
a uniqueZ,-grading. The Clifford algebra correspondingBduilt over theZ,-graded space
A (V) is called the Clifford algebra of multivectors [8].

We proved the theorem that, due to an appropriate choice of the bilinear Borm
Ct(K?', B), itis possible to find: bivectorsh; which generate the Hecke algetifa(n+1, q),
which is not free at least for > 5. The proof was straightforward. Since we achieved a large
number of remaining freedoms in the Clifford bilinear foBnthese parameters might be used
to obtain spectral parameters in the braid relation, which then mutates into the Yang—Baxter
equation. This will be considered elsewhere.

We succeeded in finding a decisive answer to the structure of the kernel of this morphism
from Hy(n + 1, ¢) into C¢;, . The spaces of balanced multivectors played an important role.
A connection between representation spaces and graded spaces was thereby established. A
connection to supersymmetric Schur functions occurs.

In the theory of (quantum) Yang—Baxt&®-matrices, it seems not to be clear which
interpretation to the symmetries and formulae should be given, see [55]. This situation
changes in our radical approach, which might be its greatest advantage. Since the Clifford
algebra already has an interpretation in physical terms, we have to lookiatyeperators as
composite entities. This supports our opinion stated in the introduction and also promoted in
[27] thatg-symmetry might be connected with composite effects. A decision of this conjecture
requires further work, especially on the states involved in the calculation of invariants, see [52].
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