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Hecke algebra representations within Clifford geometric
algebras of multivectors

Bertfried Fauser†
Universiẗat Konstanz, Fakultät für Physik, Fach M678, 78464 Konstanz, Germany

Received 21 October 1997, in final form 27 May 1998

Abstract. We introduce Clifford geometric algebras of multivectors which exhibit a bilinear form
which is not necessarily symmetric. Looking at a subset of bi-vectors inC̀ (K2n, B), we prove that
these elements provide a representation of the Hecke algebraHK(n + 1, q) if the bilinear formB
is chosen appropriately. This shows thatq-quantization can be generated by Clifford multivector
objects which usually describe composite entities. This contrasts current approaches which give
deformed versions of Clifford algebras by deforming the one-vector variables. Our example shows
that it is not evident, from a mathematical point of view, thatq-deformation is in any sense more
elementary than the undeformed structure.

1. Introduction

Recent developments in theoretical physics employ the so-callednon-commutative geometry
[1] or in a more special caseq-deformed geometry[2–4]. The underlying structure is either
C∗-theory, which also incorporates topological and convergence aspects, or Hopf algebras,
which model the algebraic aspects of a theory [5, 6]. It is convenient to speak ofq-symmetry
since the spaces on whichq-symmetry acts tend to bebraided. It is thus convenient to study
braided monoidal categories, see, for example, [2, 7, 8]. The main idea is to introduce a braided
tensor product algebra structure

(a ⊗ b)(c ⊗ d) = a9(b ⊗ c)d (1)

where9 is a braiding. If9 is trivial or minus the flip operator9(a⊗ b) = −b⊗ a, one deals
with the ordinary tensor product (bosons) or aZ2-graded version of it (fermions). A general
braiding thus leads to general or braid statistics. The central relations obeyed by braid groups
are the Artin braid relations [9]

ti ti+1ti = ti+1ti ti+1

ti tk = tkti |i − k| > 2. (2)

The first is actually equivalent to the so-called quantum Yang–Baxter equation, which is a
special case of the Yang–Baxter equation [10] (in standard notation)

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(v) (3)

with the spectral parameters set tov = u + v = u.
There has been great progress in the theory of (quantum) statistical mechanics, which

originated in the development of the inverse scattering method [11] and the star triangle
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relation [12], both methods having their roots in braided symmetries, see, for example, [13].
There are now many models which are solvable by these methods: the Ising [14] andN -state
Potts models [15, 16] and the Vertex [17] and IRF models [18] are prominent examples. A
further example might be given by the (fractional) quantum Hall effect [19]. Furthermore, the
unexpected connection between link invariants and type II subfactors of von Neumann algebras
unveiled by Jones has pushed low-dimensional topology far ahead, see [20, 21]. There is even
a connection of the Jones polynomial to quantum field theory [22].

A further branch of applications arises from the common belief thatq-symmetry is more
general than the usual bosonic or fermionic symmetries and is thus more fundamental, see,
for example, [2, 23, 24]. The natural thing to do is therefore to provideq-deformed versions
of physical relevant groups, for example the Poincaré group [25]. There is a strong belief that
the fundamental constant ¯h is involved in this construction and that spacetime should behave
as if it were ‘q-symmetric’ at small scales.

The above-mentioned situations, whenq-symmetry leads to explicit results, share the
feature of being effective or composite models. There is no recentevidencethatq-symmetry
has to be used in fundamental interactions. Moreover, it might be expected that aq-deformed
Poincaŕe group has an underlying structure which generates this symmetry.

From a mathematical viewpoint, there is no harm inq-deforming all structures which
can be so changed. However, a physical application requires an interpretation which seems
currently not to be obvious, but relies on rather abstract developments such as quantum planes
andq-deformed or non-commutative geometry.

We are thus in a perplexing situation, because in generalq-deformation can be applied to
nearly every mathematical structure which is currently used in physics. However, we do not
know in which cases this might be reasonable. To be able to answer this question, it is a valuable
advantage to embed the mathematical structure which lays at the heart ofq-deformation, the
Hecke algebra, into a larger framework. From this outstanding point of view it might be
possible to decide ifq-symmetry has to be applied to, for example, gravitation or not.

A very interesting approach toq-symmetry using spinors, and thereby also with the help
of Clifford algebras, can be found in [7]. This approach, however, takesq-symmetry as an
elementary property. In the same spirit, the Clifford algebra of a Hecke braid was constructed
in [26].

We will provide a theorem which shows that Hecke algebra representations can be obtained
within certain Clifford algebras, being faithful in low dimensions. These representations are
generated by bi-vector elements and thus by objects which are composed. Furthermore, since
the interpretation of Clifford algebraic expressions is well known, we come to the conclusion
thatq-symmetry is tightly interwoven withcompositestructures, as was suggested already in
[27]. This relation is seen from the fact thatq-symmetry is obtained in this approach as a
multivector symmetry. It is this relation that makes us so suspicious of aq-deformation of
spacetime as long as one does not have amicroscopic descriptionof these entities. Hopefully
our approach will open the possibility of clarifying this situation.

2. Clifford geometric algebra of multivectors

There are many possibilities of introducing Clifford algebras, each of them emphasizing a
different point of view. In our case, it is of utmost importance to have the Clifford algebra built
over a graded linear space. This grading is obtained from the space underlying a Grassmann
algebra. The Clifford algebra is then related to the endomorphism algebra of this Grassmann
algebra. This construction, the Chevalley deformation [28], was originally invented to be able
to treat Clifford algebras over fields ofchar = 2, see the appendix of [29] by Lounesto and
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[36]. However, we use this construction in an entirely different context. With the help of the
construction of Riesz [29], one is able to reconstruct the multivector structure and thereby a
correspondence between the linear spaces underlying the Clifford algebra and the Grassmann
algebra in use. This reconstruction depends on an automorphismJ , which is arbitrary, see [30].
In fact this is just the reversed direction of our construction given below following Chevalley.

Let T (V ) be the tensor algebra built over theK-linear spaceV . The fieldK will be either
R orC. With V 0 ' K we have

T (V ) = K⊕ V ⊕ V ⊗K V ⊕ · · · . (4)

The tensor algebra is associative and unital. InT (V ) one has bilateral or two-sided ideals,
which can be used to construct new algebras by factorization. As an example, we define the
Grassmann algebra in this way.

Definition 1. The Grassmann algebra
∧
(V ) is the factor algebra of the tensor algebra wrt

the bilateral ideal

IGr = {y | y = a ⊗ x ⊗ x ⊗ b a, b ∈ T (V ), x ∈ V }∧
(V ) = π(T (V )) = T (V )

IGr
= K⊕ V ⊕ V ∧ V ⊕ · · · . (5)

The canonical projectionπ : T (V ) 7→∧
(V ) maps the tensor product⊗ onto the exterior or

wedge product denoted by∧.

One may note that the factorization preserves the grading naturally inherited by the tensor
algebra, since the idealIGr is homogeneous. Defining the homogeneous parts ofT (V )

and
∧
(V ) by T k(V ) = V ⊗ · · · ⊗ V and

∧k
(V ) = V ∧ · · · ∧ V , k-factors, we obtain

π(T k(V )) =∧k
(V ).

Proceeding to Clifford algebras requires a further structure, the quadratic form.

Definition 2. The mapQ : V 7→ K, satisfying (α ∈ K, x, y ∈ V )

(i) Q(αx) = α2Q(x) (6a)
(ii) Bp(x, y) = 1

2(Q(x + y)−Q(x)−Q(y)) (6b)

whereBp(x, y) is a symmetric bilinear form, is called a quadratic form.

It is tempting to introduce an idealIC`

IC` = {y | y = a ⊗ (x ⊗ x −Q(x)1l)⊗ b, a, b ∈ T (V ), x ∈ V } (7)

to obtain the Clifford algebra by a factorization procedure. However, since we are interested
in arbitrary bilinear forms underlying a Clifford algebra, we will take another approach, which
is much more reasonable for such a structure. Furthermore, the Clifford algebradoes nothave
an intrinsic multivector structure, but isonlyZ2 graded, since the idealIC` is inhomogeneous.

Let V ∗ be the space of linear forms onV , i.e.V ∗ ' lin[V,K]. Elementsω ∈ V ∗ act on
elementsx ∈ V , but there isno natural identification betweenV andV ∗. However, we can
find a set ofxi which spansV and dual elementsωk acting on thexi in acanonicalway

ωk(xi) = δki . (8)

This allows the introduction of a map∗ : V 7→ V ∗,x∗i = ωi , which may be called the Euclidean
dual isomorphism [31]. The two spaces(V ∗, V ) connected by this duality constitute a pairing
〈· | ·〉 : V ∗ × V 7→ K. V ∗ is isomorphic toV in finite dimensions, so it is natural to build a
Grassmann algebra

∧
(V ∗) over it. This is the algebra of Grassmann multiforms.

It is therefore natural to extend the pairing of the grade-one space and its dual to the
whole algebras

∧
(V ) and

∧
(V ∗), as can be seen by its frequent occurrence in the literature

[30, 32–36] and others. This can be seen in the following.
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Definition 3. Let τ, η ∈ ∧(V ∗), ω ∈ V ∗, u, v ∈ ∧(V ) and x ∈ V , then we can define a
canonical action of

∧
(V ∗) on

∧
(V ) requiring

(i) ω(x) = 〈ω | x〉 (9a)
(ii) ω(u ∧ v) = w(u) ∧ v + û ∧ ω(v) (9b)

(iii) (τ ∧ η)(u) = τ(η(u)) (9c)

whereû is the main involutionV̂ = −V extended to
∧
(V ).

In definition 3 we have in fact given an isomorphism between the Grassmann algebra of
multiforms

∧
(V ∗) and the dual Grassmann algebra [

∧
(V )]∗. This can be made much clearer

by writing

y y x = ωy(x) = 〈ωy | x〉 = B(y, x) (10)

where we have used the canonical identification ofV andV ∗ via the pairing. One should
be very careful in the distinction of

∧
(V ∗) and [

∧
(V )]∗, since they are isomorphic but not

equivalent. Furthermore, we emphasize that in writingy y we make explicit use of aspecial
dual isomorphism encoded in the contraction

. y : V 7→ V ∗

y → y y = ωy. (11)

Since there is no natural, that is mathematically motivated or even better functorial, relation
betweenV andV ∗, we are called to seek forphysically motivated reasonsto select a pairing.
This freedom will enable us in section 3 to give a proof of our main theorem.

Theorem 4. Let (V ,Q) be a pair of aK-linear spaceV and a quadratic formQ as defined
in definition 2. There exists an injectionγ , called a Clifford map fromV into the associative
unital algebraC̀ (V ,Q), which satisfies

γxγx = Q(x)1l. (12)

Definition 5. The (smallest) algebraC̀ (V ,Q) generated by1l andγxi , {xi} spanV , is called
(the) Clifford algebra ofQ overV .

By polarization of the relation (12) we get the usual commutation relations,x, y ∈ V ,

γxγy + γyγx = 2Bp(x, y)1l (13)

whereBp(x, y) is the symmetric polar form ofQ as defined in (6).

Remarks. (i) We could have obtained this result directly by factorization of the tensor algebra
with the ideal (7). (ii) There exist Clifford algebras which are universal, in this case it is
convenient to speak fromthe Clifford algebra over(V ,Q). (iii) If V ' Kn ' Cn or Rn,
we denoteCL(V,Q) also byCL(Cn) ' C̀ n or C̀ (Rp,q) where the pairp, q enumerate the
number of positive and negative eigenvalues ofQ. We can also give the dimensionn and
signatures = p − q to classify all quadratic forms overR. In the case of the complex field,
one remains with the dimension as can be seen, for example, from the Weyl unitary trick,
letting xi → ixi which flips the sign. We do not use sesquilinear forms here, which could
nevertheless be included.

We will now use Chevalley deformations to construct the Clifford algebra of multivectors.
The main idea is that one can decompose the Clifford map as

γx = x y+x ∧ . (14)

There is thus a natural action ofγx on
∧
(V ).
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Theorem 6 (Chevalley).Let
∧
(V ) be the Grassmann algebra overV and γ : V 7→

End(
∧
(V )) be defined as in (14), thenγ is a Clifford map.

We have shown thatC̀ is a subalgebra of the endomorphism algebra of
∧
(V ),

C̀ ⊆
∧
(V ). (15)

It is possible to interpretx y andx∧ as annihilating and creationoperators(on the Grassmann
algebra) [37].

With the help of relations (9) we can then lift this Clifford map to multivector actions.
No symmetry requirement has to be made on the contraction.This leads to the following
definition.

Definition 7 (Clifford algebra of multivectors). LetB : V×V 7→ Kbe an arbitrary bilinear
form. The Clifford algebraC̀ (V , B) obtained from lifting the Clifford map

γx = x y+x∧ = 〈x | ·〉 + x∧ = B(x, ·) + x∧ (16)

to End(
∧
(V )) using relations (9) is called Clifford algebra of multivectors.

Note thatB(x, ·) = ωx is a map fromV → V ∗ andincorporatesa dual isomorphism. It
is clear from the construction thatC̀ (V , B) has a multivector structure or say aZn-grading
inherited from the Grassmann algebra

∧
(V ).

B admits a decomposition into symmetric and antisymmetric partsB = G + F . The
symmetric partG = Bp corresponds to a quadratic formQ, see definition 2.

Theorem 8. The Clifford algebraC̀ (V ,Q) ' C̀ (V ,G) is isomorphic as Clifford algebra to
C̀ (V , B), if B admits a decompositionB = G + F ,GT = G, F T = −F .

A proof can be found for low dimensions in [35] and in general in [8]. However, this result
is implicitly known to physicists, see [38, 39]. In fact, this is the old Wick rule of quantum field
theory. We will insist on theZn-grading and therefore carefully distinguish Clifford algebras
of multivectors with a common quadratic formQ but different contractionsB. Only this
generalization makes it possible to find a Hecke algebra representation in Clifford algebras.

We give some further notation. Let{ji} be a set of elements spanningV ' 〈j1, . . . , jn〉
and{∂k} be a set of dual elements. Building the Grassmann algebras

∧
(V ) and

∧
(V ∗) and

defining the action of the forms via (9), one obtains the relations

(i) ji ∧ ji = 0= ∂i ∧ ∂i (17a)
(ii) ∂ijk + jk∂i = Bik +Bki = 2Gik. (17b)

The spaceV = V ⊕ V ∗ is thus spanned by (note the reversed order of indices for the∂

elements)

{e1, . . . , e2n} = {j1, . . . , jn, ∂n, . . . , ∂1}. (18)

To have a simple notation, we introduce barred indicesi ∈ {1, . . . , n}
ei = e2n+1−i (19)

or equivalently

ei = ji ei = e2n+1−i = ∂i . (20)

The contraction onV in C̀ (V , B) is then written as

[B(ei, ej )] = [Bij ] =
∣∣∣∣Bjjuv B

j∂
st

B
∂j
rq B∂∂xy

∣∣∣∣⇔ ∣∣∣∣ [Mrs ]jj [B1
tu]

j∂

[B2
vw]∂j [Nx y ]∂∂

∣∣∣∣ (21)
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where the superscripts indicate the type of base element. Indices of blocks run in{1 . . . n}.
Note that the matricesB1, B2 andN are not directly submatrices ofB because of our barred
index notation. Introducing ann× n matrixJ = δi,n+1−k we can identify them as

Bj∂ = B1J B∂j = JB2 B∂∂ = JNJ. (22)

We could handle the 2n-dimensional complex case asC̀ (R2n+1, B), but we will restrict
ourselves to the even-dimensional case and look atC̀ (C2n) ' C ⊗ C̀ (R2n) as a
complexification.

3. Hecke algebra representations over Clifford bi-vector generators

3.1. The definition and main theorem on the algebra morphism

Definition 9. The Hecke algebraHK(n + 1, q) has the following presentation

(i) t2i = (1− q)ti + q1l Hecke condition (23a)
(ii) ti tk = tkti , |i − k| > 2 commutator (23b)
(iii) ti ti+1ti = ti+1ti ti+1 Artin braid relation [9] (23c)

with generators1l, bi , i ∈ {1, . . . , n}, see [40].

Our goal is to find an algebra homomorphism of theti generators as bi-vectors in an
appropriate Clifford algebraC̀ (R2n, B) or C̀ (C2n, B). We can formulate our result in the
following.

Theorem 10. A representationρ of the Hecke algebraHK(n + 1, q) of definition 9 can be
found in the Clifford algebra of multivectorsC̀ (K2n, B) of definition 7 with the following
identifications:

(i) ρ(ti) = bi := ei ∧ ei = ei ∧ e2n+1−i ≡ ji ∧ ∂i i ∈ {1, . . . , n} (24a)

(ii) B := [Bij ] =
∣∣∣∣ [Brs ]jj [Btu]j∂

[Bvw]∂j [Bxy ]∂∂

∣∣∣∣ (24b)

where the submatrices ofB satisfy the conditions

Bjj ≡ Mrs = 1
2(Mrs −Msr)

JB∂∂J ≡ Nx y = 1
2(Nx y −Ny x)

Bj∂J ≡ [B1
tu] = [Btu + (q − Btu)δt,u]

JB∂j ≡ [B2
vw] = [−Bwv + (1 +q)δw,v + qδw+1,v + δw,v+1]. (25)

Proof. We determine the constraints on the bilinear formB by (23).

(i) We try to identify the bi-vector elementsbi from (24) with Hecke generatorsti from (23).
Since we insist on the multivector structure inherited from the Grassmann multivectors
underlying the Clifford multivectors, we have to fulfil in any case the condition

eiei = Bii + ei ∧ ei = 0 (Bi i = 0). (26)

The Hecke relation (23a) leads with

bi = ji ∧ ∂i = ji∂i − Bii (27)
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to

b2
i = (ji ∧ ∂i)2
= (ji∂i − Bii)ji ∧ ∂i
= ji [Bii∂i − ji∂2

i ] − Biiji ∧ ∂i
= Bi iBii − (Bii − Bii)ji ∧ ∂i
= Bi iBii − (Bii − Bii)bi
!= (1− q)bi + q. (28)

We obtain as solutions

Bii = 1 or − q
Bii = q or − 1. (29)

We will choseBii = 1, Bii = q. The overall minus sign does not matter in our
considerations. Including the nilpotency of the Grassmann sourcesj and∂, we obtained
4n constraints onB.

(ii) The commutator relation (23b), which is valid for|k− i| > 2, can be calculated along the
same lines as in (28). This results in

bibk − bkbi = (BikBik − BkiBki − Bi kBik +Bk iBki)1l

+(Bik +Bki)ji ∧ ∂k − (Bik +Bki)jk ∧ ∂i
−(Bi k +Bk i)ji ∧ jk − (Bik +Bki)∂i ∧ ∂k

!= 0. (30)

From this we obtain

Bik = −Bki Bi k = −Bk i Bik = −Bki (31)

if |i − k| > 2. This leads to 3n(n− 2)/2 constraints onB.
(iii) The third relation is somewhat lengthy and yields

bibi+1bi − bi+1bibi+1 = (1 +q)(Bii+1Bi+1i − Bi+1iBi i+1)1l

+((Bi+1i +Bii+1)(Bii+1 +Bi+1i )

−(Bii+1 +Bi+1i )(Bi+1i +Bi i+1)− q)ji ∧ ∂i
+((Bi i+1 +Bi+1i )(Bi+1i +Bii+1)

−(Bi+1i +Bii+1)(Bi+1i +Bi i+1) + q)ji+1 ∧ ∂i+1

−(1 +q)(Bii+1 +Bi+1i )∂i ∧ ∂i+1 + (1 +q)(Bi i+1 +Bi+1i )ji ∧ ji+1

!= 0. (32)

This leads to

Bi+1i = −Bii+1 Bi i+1 = −Bi+1i Bii+1 = 1− Bi+1i Bi+1i = q − Bii+1

(33)

which are 4(n− 1) further constraints onB. All in all, we have to impose the constraints
given in (26), (29), (31) and (33) on the bilinear formB of 4n2 arbitraryK-valued
parameters. We obtain
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No of constraints= 3n2 + 13n− 8

2
(34)

and remain with

No of degrees of freedom= 5n2 − 13n + 8

2
. (35)

The explicit form ofB can be derived from the constraints to be of the form (25). Since
we remain with superfluous degrees of freedom, which might be set to arbitrary numbers,
we have derived a whole set of Hecke algebra representations inC̀ (V , B).

�

3.2. On the structure of the algebra morphismρ

Since we have shown that we can find an image set of generators, we have to ask if they are free.
In other words, we have to show whether or not the representationρ is injective or equivalently
has a trivial kernel. The mere calculation of the relations does not show this [41].

3.2.1. Some general aspects of the morphism.The main argument for a non-trivial kernel
relies on dimensional considerations and belongs to the referee. We can calculate the maximal
possible dimension spanned by the Clifford generatorsj and∂ in the following way. We have
dimV = dimV T = n and thus dimV = dimV ⊕ V T = 2n. The corresponding Clifford
algebra has 22n dimensions; however, since we are interested only in even-graded elements, we
remain with dimC̀ (V , B)even= 22n−1 = 4n/2. On the other hand, it is known, for example
[42, 43], that the dimension ofHK(n + 1, q) is equivalent toSn+1, iff q is generic, i.e. not a root
of unity. One knows that this leads to dimHK(n + 1, q) = dimSn+1 = (n + 1)!. From table 1,
we see that forn > 5 the number of linear independent algebra elements ofHK(n + 1, q)
exceeds the number of all independent even-dimensional Clifford elements.

Table 1. Dimensions of Clifford algebras, Hecke algebras and the kernel. For a special setting of
the remaining freedoms more decisive results are given in section 3.2.2.

n dim C̀ even= 4n/2 dimHK(n + 1, q) = (n + 1)! kerρ

1 2 2 0 (trivial)
2 8 6 0 (non-trivial)
3 32 24 ?
4 128 120 ?
5 521 720 6= 0

It is clear that from the results in table 1 that we have a non-trivial kernel for genericq

andn > 5.

Proof. Proof of the injectivity forn = 2. From the representation theory of the symmetric
group, it is known [44] that the transposition class-sum uniquely characterizes all irreducible
representations up toS6. Furthermore, it was shown that in the Hecke case the corresponding
construction is [45]

Cn+1 := t1 + t2 + · · · + tn +
1

q

n−1∑
i=1

ti ti+1ti +
1

q2

n−2∑
i=1

ti ti+1ti+2ti+1ti + · · · + 1

qn−1
t1 . . . tn . . . t1.

(36)
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This central operator now uniquely describes all irreducible representations ofHK(n + 1, q).
Different eigenvalues distinguish orthogonal representations, where multiple roots count the
number of equivalent representations. In our case, we have

C3 = b1 + b2 +
1

q
b1b2b1 (37)

where we calculateC3 in theC̀ -image! The eigenvalues are[
(−q2 − 2q)1,

(
2 +

1

q

)1

, (1− q)4
]

(38)

[−3, 3, (0)4]q→1 (39)

in agreement with [45], where the exponent gives the degeneracy. The fundamental
representation is the orthogonal sum of the corresponding eigenspaces and is therefore of
dimension 6= 3! = dimHK(3, q).

Remark. The elegant methods for studying Hecke algebras used in [45, 46] are not applicable,
since they remain within the Hecke algebra setting and do not show the possible degeneracy
of the image generators.

Remark. We might circumvent the dimensional argument against an injective homomorphism
in the following way. Assume that we find a mapρ(2r) : HK(n+1, q)→ C̀ (K2rn, B) of higher
degree withρ(2r)(ti) = b(2r)i so that the Hecke relations (23) are satisfied,r = 1 was our above
case. If one then seeksn linear independent diagonal 2r-elementsb(2r)i , this requiresV to be of
dimensionr(2n), which leads to a total dimension of 22nr/2r = 2(2n−1)r for C̀ +···+(V , B)− r
times the even part. Sincer is in principle arbitrary, we may construct algebra morphisms
ρ(2r) which do not fail to be injective for sufficiently larger due to the dimensional argument.
However, this is not a proof that kerρ(2r) = 0. There might be a non-trivial kernel for other
reasons, as can be expected from the discussion in the next subsection.

Remark. If one looks at theb(2r)i as composed objects, only low-dimensional cases are of
physical interest.

Remark. A genuine account ofq-symmetry and its relation to classical groups can be found
in [7, 45]. From this work, it is clear that not allHK(n + 1, q) representations can occur if
the invariance under the innerbi-vectorproduct is also required. This can also be seen for
symmetric groups [47]. A direct construction of spinor representations etc within the composite
Clifford algebraic framework has intriguing details and will be given elsewhere, but see also
[48].

3.2.2. Structure theorem forkerρ in the balanced situation. In this section we will consider
the properties of ker(ρ). This kernel has an intriguing structure, but we will be able to prove
in relevant cases which structure governs the split into image and kernel.

Lemma 11. The kernel ofρ strongly depends on the values, zero or not, of the chosen bilinear
form B. Since the symmetric part is fixed by (23) up to special coordinate transformations
leaving (23) invariant, the kernel dimension actually depends on the antisymmetric part
of B.
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Proof. Calculate the Clifford product of two generatorsbi, bj :

bibj = BijBij − Bi jBij +Bij ji ∧ ∂j − Bij jj ∧ ∂i − Bi j ji ∧ jj − Bij ∂i ∧ ∂j +

ji ∧ jj ∧ ∂j ∧ ∂i . (40)

Examining the terms with two basis elements, we notice that they possess a pre-factorBij with
or without barred indices. If such a factor is zero, the whole term vanishes. Furthermore, we
cannot generate this Clifford basis monomial by another product of thebi generators. �

Obviously this means, that the kernel dimension increases with every vanishing element
in B. Since we had some freedom to choose the antisymmetric part ofB, we can have larger
and smaller kernels.

To reach our final goal, the description of the kernel ofρ for a special choice of parameters,
we have to construct all Clifford basis monomials which can be reached by multiplyingbi
generators. What is needed is an algebraic basis of the Hecke algebra{bI } to perform the map
ρ : HK(n + 1, q) 7→ C̀ n,n on this basis, i.e.ρ : {bI } 7→ {jI ′ ∧ ∂I ′′ }, where capitals denote
index sets. We define some properties of an algebraic basis of the Hecke algebra [46].

Definition 12. A minimal wordgt,s is a sequence ofbi generators with step-wise decreasing
indicesgt,s = btbt−1bt−2 . . . bt−s .

A minimal word has lengths + 1. By examination we see that there are(n2 + n + 2)/2
such words.

Definition 13. A reduced wordrt1,s1,t2,s2,...,tm,sm is a product of minimal wordsgti ,si , where
si < ti+1 holds.

Lemma 14. The reduced words build up a basis of the Hecke algebraHK(n+1, q) for generic
q.

Proof. We have built up the sets of minimal words{1l}, {1l, b1}, . . . , {1l, bj , bjbj−1, . . . ,

bjbj−1 . . . b1}, . . . , {1l, . . . , bn . . . b1}. Multiplying the terms element-wise and collecting
them in a new set gives a totality of 1∗ · · · ∗ n = n! different reduced words, which therefore
spanHK(n + 1, q). �

This basis provides us with the so-called regular representation, which contains all
irreducible representations according to their multiplicity. It is convenient to introduce (q-)
Young diagrams to label these representations and numberings, and hence Young tableaux to
distinguish the different but isomorphic copies of the same type. We write [n1, . . . , ns ] for a
partition ofN =∑ ni into s parts (Young diagram). Furthermore, we define [1r ] = [1, . . . ,1]
r-times and [0] as [10] are defined as no-box, i.e. [r, 0] ≡ [r] and [r, 10] ≡ [r], to simplify
special cases in our formulae. If we writemi for the multiplicity andYi for the Young diagram,
we obtain the decomposition formula

⊕I bI = ⊕i ⊕mi Yi . (41)

Remark. We loosely speak about Young diagrams and Young tableaux instead ofq-Young
diagrams andq-Young tableaux, since we only need some of their very general properties.
In fact, q-Young diagrams are identical to Young diagrams, butq-Young tableaux should be
handled with care. Theq-Young operators corresponding to such tableaux show up a quite
different structure, as the box content also becomes a function ofq, see [46, 48].

We now apply the mapρ onto this basis to obtain the corresponding Clifford monomials
and obtain as the lack of elements the dimension and structure of the kernel. To be able to do
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this, we specialize the bilinear formB in a suitable manner. From physical applications and
driven by simplicity, we are interested in balanced multivectors only. Furthermore, we will
introduce a new basis respectively a new more suitable bilinear form also denoted byB.

Definition 15. A balanced multivector is a multivectorMI,J where the cardinality of the index
sets ofI andJ are equal, i.e.#I = #J (equal number ofj and∂ generators).

It is trivial to see that thebi generators are balanced; however, from (40) we see, that
their products contain non-balanced multivectors. If we now set the doubly barred and doubly
unbarred elements in the bilinear formB zero, which can be done since they all belong to the
antisymmetric part ofB, the product formula (40) goes over into

bibj = BijBij +Bij ji ∧ ∂j − Bij jj ∧ ∂i + ji ∧ jj ∧ ∂j ∧ ∂i . (42)

To simplify the bilinear form further, obtaining a bilinear form which is non-zero in every
block off-diagonal entry, we define

[Bij ] :=
[

0 Bu

Bd 0

]

Bu :=



q −λ
2 + q

λ
ν . . . . . . ν

−λ
2 + q

λ
q −λ

2 + q

λ
ν . . . ν

ν −λ
2 + q

λ
q −λ

2 + q

λ

. . . ν

...
. . .

. . .
. . .

. . .
...

ν . . . ν −λ
2 + q

λ
q −λ

2 + q

λ

ν . . . . . . ν −λ
2 + q

λ
q



Bd :=



1 λ −ν . . . . . . −ν
q

λ
1 λ −ν . . . −ν

−ν q

λ
1 λ

. . . −ν
...

. . .
. . .

. . .
. . .

...

−ν . . . −ν q

λ
1 λ

−ν . . . . . . −ν q

λ
1


ν 6= 0 6= λ. (43)

It is no restriction to our question to identify all free parameters as belonging to two species,
since only their vanishing or not vanishing affects the structure of the kernel. In general,
however, different parameter values lead to different results. The parametersν andλare distinct
due to the fact thatν might be set to zero, while ifλ is set to zeroρ is no longer a morphism
from HK(n + 1, q) into C̀ +

n,n. We may further notice that the symmetric part of the above
bilinear form after performing the limitq = λ→ 1 andν → 0 becomes one half the Cartan
matrixAn in each blockGu, Gd . The doubled symmetric partGu(q) = 2∗ 1/2∗ (Bu +BdT )
can be defined asq-Cartan matrix ofAn(q). However, without the antisymmetric part ofB
this will not lead to a ‘quantum’ structure.

We are now prepared to give a structure theorem of kerρ in this special situation.
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Theorem 16 (Balanced morphism).Let ρ be a Hecke algebra morphism as described in
theorem 10 wrt the bilinear form given in (43). The morphismρ maps all representations
which have L-shaped Young diagrams[(d − r), 1r ], one row one column, bijectively into the
Clifford algebraC̀ +

n,n. The kernelkerρ consists of all other representations ofHK(n + 1, q).
The dimension of the image,imgρ = ρ(HK(n + 1, q)) is #imgρ = (2n)!/(n!)2 while the
dimension of the kernel is#kerρ = n!− #imgρ. The representation spaces corresponding to
different Young diagrams (including multiplicities) are given by the spaces of multivectors of
different grades (Grassmannians), denoted byGr,r .

To prove theorem 16 we need some further results.

Lemma 17. The Clifford reversion, denoted by˜ , maps theq-symmetrizer andq-anti-
symmetrizer of the same symbols onto one another. That is,˜ interchanges rows and columns
in Young diagrams and tableaux.

Proof. Observe that the (anti)symmetrizer(−/+) of two elements is given as

P +
i := q + bi

q + 1
P−i := 1− bi

q + 1
. (44)

We have

P +
i ˜=

q

q + 1
+
bi ˜
q + 1

= q + (1− q)− bi
q + 1

= 1− bi
q + 1

= P−i (45)

andvice versa, since˜ ˜ = Id. This property can be enlarged to so-called Garnir elements [46]
which are needed to construct theq-(anti)symmetrizer and, due to the fact that˜ is an anti-
algebra morphism wrt the Clifford product, to the whole Young operators, which are products
of row symmetrizers and column antisymmetrizers. �

Lemma 18. If and only if a representation with a corresponding Young diagram is mapped
into C̀ +

n,n, then the tilted representation occurs there also. Tilted means representations for a
Young diagram with rows and columns interchanged.

Proof. We can expand the Clifford picture of the corresponding Young operator of the Young
diagram into a Clifford product and sum of Clifford basis monomials. Then the Clifford
reversion yields the tilted Young operator with lemma 17. �

We need some more information on the dimensionality of L-shaped diagrams.

Lemma 19. The dimension of the representation of an L-shaped Young diagram of type
[(d − r), 1r ] is equal to the binomial coefficient( d

r
). The dimension of all such L-shaped

representations, multiplicities included, is

d∑
r=0

#[(d − r), 1r ] =
d∑
r=0

(
d

r

)2

= (2d)!

(d!)2
. (46)

The same conventions on[0] and[10] are assumed as above.
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For a proof we refer to [47, 49]. In fact, only the ‘hook-rule’ and multiplicities are
needed.

We can now prove theorem 16.

Proof of Theorem 16.We have seen in (42) that two generators when multiplied yield many
Clifford monomials. We have to distinguish two types of them. The first is that of correlated
indices, hence for example elements of typeI = {ij}

eII = eiji j = ji ∧ jj ∧ ∂i ∧ ∂j (47)

which can easily be generated by multiplying the generators and picking out the highest grade.
These might also be obtained by ‘wedging’ the generators.

The second type of Clifford monomials is built up from elements with two maximal distinct
index setsI ∩ J = ∅, for exampleI = {ij}, J = {rs}

eIJ = eijr s = ji ∧ jj ∧ ∂r ∧ ∂s. (48)

In (42) we found that two generatorsbi , bj produce such terms as

Bij jj ∧ ∂i Bij ji ∧ ∂j . (49)

These terms are non-zero if and only ifBij andBij are non-zero. To be able to generate
all possible elements of this second form, we have to require thatBij 6= 0 6= Bij ∀ i, j as
is the case in (43). Furthermore, one has to notice that the maximal cardinality ofI andJ
is n/2, sinceI ∪ J = {1, . . . , n} and I ∩ J = ∅. This means that onlyn generators are
needed to produce these elements. All other elements required are mixed forms of these two
types. The length of the reduced words has a range from 0 ton! and is thus rich enough to
yield every balanced monomial, as can be seen by iteration of the above arguments. This
proves that the image ofρ consists of all balanced Clifford monomials inC̀ +

n,n. In terms of a
formula,

imgρ(HK(n + 1, q)) = ⊕ni=0Gi,i (50)

whereGi,i are Grassmannians of balanced multivector spaces.
To complete the proof, we have to give the dimensionalities and identifications with

representations of these spaces. Obviously, #G0,0 = #Gn,n = 1, and the other spaces are built
up as follows (r timesr factors)

Gr,r = V ∧ · · · ∧ V ∧ V T ∧ · · · ∧ V T

#V ∧ · · · ∧ V =
(n
r

)
#V T ∧ · · · ∧ V T =

(n
r

)
. (51)

We obtain the following formula for the dimensions:

#imgρ = #⊕nr=0 Gr,r =
n∑
r=0

(n
r

)2
= (2n)!

(n!)2
. (52)

To complete the claims of theorem 16, we have to show that the spacesGr,r of
balanced multivectors of definite grade provide representations according to the L-shaped
Young diagrams of type [(n − r), 1r ]. From lemma 19 we know that the dimension
formula

#[(n− r), 1r ] = #Gr,r (53)

holds for all r, where 0 and n is included by our above definition. It
remains to show that these spaces are invariant under the action of the generators
bi .
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There are three cases. We can define a Lie action of thebi generators on theGr,r spaces
via a commutatorXrr ∈ Gr,r

bi •Xrr := [bi, Xrr ]. (54)

Since thebi are bi-vector elements this action is grade preserving. A little bit surprising is the
fact that we can also find a left (right) representation on the spacesGr,r , defined asYrr ∈ Gr,r ,

bi • Yrr := biYrr ∈ Gr,r . (55)

The third possibility is given by the automorphism action. Calculating

b−1
i = −

1

q
[(1− q)− bi ] = −1

q
bi ˜ (56)

we have withZrr ∈ Gr,r

bi • Zrr := biZrrb−1
i . (57)

This map is grade preserving since thebi generators are in the Clifford Lipschitz group, see
[48], even if the reversion does not respect the grades!

Obviously, all types of representations are degenerate with the multiplicitymi
corresponding to the Young diagramYi . To get the irreducible representations one would
have to pick out a special basis inGr,r which splits the Grassmannians intoHK(n + 1, q)
irreducible parts according to numberings0 in Young tableauxYi,0

Gr,r = ⊕miYi = ⊕0Yi,0. (58)

The kernel of the balanced morphismρ consists thus of all irreducible representations with
non-L-shaped Young diagrams and is of dimension #kerρ = n! − #imgρ. �

Remark. The balanced case is closely related to supersymmetry, as can be seen from
[46], where supersymmetric Schur functions are used to characterize the representations.
Furthermore, it is known that supersymmetric, or better graded, groups gain representations
which are characterized by L-shaped Young diagrams withp-rows andq-columns in the case
of aG(p|q) supergroup [50]. See as a reference and for further literature [51].

Remark. From our results, it is clear thatHK(3, q) (n = 2) is the only case
where we have an algebra isomorphism. The next higher dimensionHK(4, q) (n =
3) has a non-L-shaped Young diagram of type [2, 2]. It is of dimension two and
multiplicity two, which gives a four-dimensional kernel and a space of 20 dimensions
for the balanced multivectors in the image,(2 ∗ 3)!/(3!)2 = 20, together: 4! =
24 = 20 + 4. The basis sets and dimensions have been checked independently by
computer algebra up to the caseHK(5, q) (n = 4). There the kernel consists of the
representations [3, 2] and [2, 2, 1], which are 50-dimensional including multiplicities, each
being representation five-dimensional with multiplicity five 5∗ 5 + 5 ∗ 5 = 50. That
is again, using(2 ∗ 4)!/(4!)2 = 70 one has finally the decomposition 5!= 120 =
70 + 50.

Remark. Since it was essential that all block-off-diagonal matrix elements of the bilinear
form (43) had to be non-zero, this has an implication on physical systems underlying
such a model. From [52] we know that this situation is obtained for mixed states only,
i.e. states which can be decomposed into convex combinations of pure or vector states.
The q-symmetric case is thus generically connected to non-Fock vacua and may describe
quasi-particles, which would support our point of view thatq-symmetry is a symmetry
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of objects with internal structure or say composites, without addressing this structure
explicitly.

3.2.3. Further observations on related algebraic systems.Since we have proved theorem 10
for the quadratic Hecke condition (23a), we have to give some comments on the other choices
of the quadratic or higher relations. One finds in the literature at least the following types of
relations

b2
i = (1− q)bi + q t2i = (q − q−1)ti + 1 e2

i = τei u
Q
i = 1. (59)

In general, one has a quadratic—or higher order, seeui—relation

x2
i = g(q)xi + h(q) (60)

whereg andh are meromorphic functions ofq. The question, if there is a transformation
connecting thebi ’s and in general thexi ’s, addresses the number of equivalence classes of
quadratic relations. We can reformulate the above equations intoQ(x) = E whereE is a
constant, and we have to classify quadratic forms. This can be done overR andC with the
help of the Brauer groupB(K) [53, 36]. This group is trivial forC since the complex field is
algebraically closed and isomorphic to{−1,+1} as a multiplicative group in the case ofR

B(K) ∼= K
∗

K2
. (61)

However, this classification only takes (23a) into account. It is easy to calculate that a
transformation of the type

xi = a(q) + b(q)bi (62)

with meromorphica(q), b(q) does not alter (23b). However, (23c) is in generalnot invariant
under such a transformation, which is well known in the literature. In fact, one should restrict
the allowed transformations to those which leave (23) unchanged. However, interesting cases
do not respect the third law in general. As an example, one arrives at the relations of a
Temperley–Lieb algebra [54], where the third relation is given usingei = (q1l + bi)/(q + 1),
τ = (2 +q + q−1)−1, compare with (23c), as

eiei+1ei − τei = ei+1eiei+1− τei+1 (= 0). (63)

Here (= 0) indicates that usually the left- and right-hand sides are each set to zero which
is in fact a new relation. The transformation from the Hecke algebra into the Temperley–
Lieb algebra would be of the above-described invariance set only ifτ = 0, which leads to
q ∈ {0,∞}. In our approach, such a relation can easily be obtained simply by another choice
of the bilinear formB or of course by the above transformation. It remains, however, to
find a connection between traces employed in the phenomenological models and states on our
algebra. Such states were introduced in [52] and provide a very rigid structure onC̀ (V , B).
These states are necessary to be able to calculate invariants and physical outcomes and to be
able to show (in)equivalence between different (re)presentations. This intriguing problem will
be addressed elsewhere.

4. Conclusion

As our main tool we have used Clifford geometric algebras of multivectors, which provide a
generalization of ordinary Clifford algebras of quadratic spaces to such a pair as (V,B). The
bilinear form does not have any symmetry in general and is thus not bijectively connected to a
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quadratic form. Every bilinear formB with the same symmetric partG gives rise to the same
Clifford algebra. Taking the fullB into account allows one to endow the Clifford algebra with
a uniqueZn-grading. The Clifford algebra corresponding toB built over theZn-graded space∧
(V ) is called the Clifford algebra of multivectors [8].

We proved the theorem that, due to an appropriate choice of the bilinear formB in
C̀ (K2n, B), it is possible to findn bivectorsbi which generate the Hecke algebraHK(n+1, q),
which is not free at least forn > 5. The proof was straightforward. Since we achieved a large
number of remaining freedoms in the Clifford bilinear formB, these parameters might be used
to obtain spectral parameters in the braid relation, which then mutates into the Yang–Baxter
equation. This will be considered elsewhere.

We succeeded in finding a decisive answer to the structure of the kernel of this morphism
fromHK(n + 1, q) into C̀ +

n,n. The spaces of balanced multivectors played an important role.
A connection between representation spaces and graded spaces was thereby established. A
connection to supersymmetric Schur functions occurs.

In the theory of (quantum) Yang–BaxterR-matrices, it seems not to be clear which
interpretation to the symmetries and formulae should be given, see [55]. This situation
changes in our radical approach, which might be its greatest advantage. Since the Clifford
algebra already has an interpretation in physical terms, we have to look at thebi generators as
composite entities. This supports our opinion stated in the introduction and also promoted in
[27] thatq-symmetry might be connected with composite effects. A decision of this conjecture
requires further work, especially on the states involved in the calculation of invariants, see [52].
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